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1. INTRODUCTION

The description of the distribution and the characteristics of water in the
atmosphere generally has been approached from two opposing points of view.
Operational models produce gross measures over relatively large areas, while
specialized models address manifestations such as fog, clouds, or precipita-
tion of a specific type or at a specific location. However, there has been no
unified set of models which handles atmospheric water in a manner that has
broad applicability over a relatively small area.

The requirements for a structure of a unified system of models are discussed
in some detail by Kreitzberg et al. 1  Cionco2 shows how such a system could
provide necessary atmospheric information for Army applications. This latter
report also describes the general characteristics of a nested set of models
and briefly outlines the tasks and requirements for their development and
implementation. A sensitivity analysis of a two-dimensional moisture model
(2DMM) can lead to an understanding of moisture models and their usefulness
and has the potential to produce preliminary information that will be of use
as input to algorithms for modeling atmospheric effects on electro-optical
(EO) systems. Such an analysis can provide the necessary understanding and
experience to begin to work with a far more complex set of nested models in
three dimensions (three-dimensional moisture model, [3DMM]) of the type
described by Cionco2 and Kreitzberg et al.1 This latter reference includes an
extensive bibliography on atmospheric moisture models, their applications, and
closely related topics. The application of output from a 3DMM to EO algo-
rithms is noted by Cionco 2 and mentioned briefly in this report.

1C. W. Kreitzberg, W. D. Mount, and B. R. Fow, 1979, Preliminary Evaluation of

Meteorological Models for Moisture Depiction and Prediction for Electro-

Optical Applicatifons, Contract DAAG29-76-D-0100, US Army Research Office, PU
Box 1ZZ11, Research Iriangle Park, NC

2R. M. Cionco, 1980, Moisture Analysis, Depiction and Prediction System of

Models: Description of e ASL Program, Internal Report, US Army Atmospheric
Sciences Laboratory, White Sands Missile Range, NM
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The 2DMM was originally developed by Kreitzberg et a13 and modified and dis-
cussed by Perkey,4 Kreitzberg and Perkey, 5 6 and Loveland.* Results of a
sensitivity analysis of the 2DMM are presented herein and briefly discussed.
This report also briefly outlines some basic facets of the model and presents
a short discussion on the possible use of results from the 2DMM for a few of
the algorithms in the Electro-Optical Systems Atmospheric Effects Library
described by Duncan et al. 7

2. MODEL DESCRIPTION

No attempt is made in this brief report to describe the 2DMM in detail, but
this section provides a framework which may be filled in by referring to the

3C. W. Kreitzberg, D. J. Perkey, and J. E. Pinkerton, 1974, Mesoscale
Modeling, Forecasting, and Remote Sensing Research, Project THEMTF _F-aT
Report, AFCRL-TR-74-0253, Department of Physics and Atmospheric Sciences,
Drexel University, Philadelphia, PA. AD 784875

4D. J. Perkey, 1976, "A Description of Preliminary Results from a Fine-Mesh
Model for Forecasting Quantitative Precipitation," Monthly Weather Rev,
104:1513-1525

5C. W. Kreitzberg and D. J. Perkey, 1976, "Release of Potential Instability:
Part I. A sequential plume model within a hydrostatic primitive equation
model," J Atmospheric Sci, 33:456-475

6C. W. Kreitzberg and D. J. Perkey, 1977, "Release of Potential Instability:
Part II. The mechanism of convective/mesocale interaction," J Atmospheric
Sci, 34:1571-1595

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,

hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA, 238 pp

7L. D. Duncan et al, 1979, The Electro-Optical Systems Atmospheric Effects
Library, Volume I, Technical Documentation. ASL-TR-0U47, US Army Atmospheric
Sciences Laboratory, White Sands Missile Range, NM
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many papers on mesoscale modeling and related areas. Kreitzberg et al, 3

Kreitzberg and Perkey,5 6 Perkey,4 and Loveland* relate directly to the 2DMM,
and the first four papers 3-6 contain many more references on this subject.

The 2DMM is a primitive equation model which assumes a hydrostatic atmosphere
and has several nonstandard plus some more "ordinary" fedtures as follows.*

a. Pressure (p) and virtual temperature (TV) are replaced by the Exner
function () and the virtual potential temperature (ev )

C p _ (R/C P) ev = T - ( R/CP)Cp PO v p

where Cp = specific heat at constant pressure and R is the qas constant for
dry air.

b. The vertical coordinates are: (1) terrain following (oz) up to a

height H, about halfway through the atmosphere in terms of mass (-3 to 5 km),
and (2) height above sea level (z) at altitudes greater than H. Typical
vertical resolution is about 1 km, but may vary with height to permit a higher
resolution near the surface. Figure I of Cogan 9 shows a sketch of the verti-
cal coordinate system. Horizontal grid points are spaced evenly, typically 40
km, although the interval (AX) may be changed. There are 16 grid points in
the vertical and 25 in the horizontal.

3C. W. Kreitzberg, D. J. Perkey, and J. E. Pinkerton, 1974, Mesoscale
Modeling, Forecasting, and Remote Sensing Research, Project THEMISi-al
Report, AFCRL-TR-74-0253, Department of Physics and Atmospheric Sciences,
Drexel University, Philadelphia, PA. AD 784875

5C. W. Kreitzberg and D. J. Perkey, 1976, "Release of Potential Instability:
Part I. A sequential plume model within a hydrostatic primitive equation
model," J Atmospheric Sci, 33:456-475

6C. W. Kreitzberg and D. J. Perkey, 1977, "Release of Potential Instability:
Part II. The mechanism of convective/mesocale interaction," J Atmospheric
Sci, 34:1571-1595

4D. J. Perkey, 1976, "A Description of Preliminary Results from a Fine-Mesh
Model for Forecasting Quantitative Precipitation," Monthly Weather Rev,
104:1513-1525

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,
hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA, 238 pp
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c. The model contains prognostic equations for the horizontal components
of velocity (u,v) virtual potential temperature (6v), specific humidity (q),
cloud water concentration (c), rain water concentration (r) and R at the top
of the model (Rtop). w below wto- is diagnosed hydrostatically by using an
effective 0v that accounts for tie cloud water and precipitation loading.
Vertical motion is calculated diagnostically from the continuity equation. A
summary of diagnostic and prognostic equations is given in the appendix.

d. The finite difference scheme "is basically second-order centered in
the vertical, fourth-order centered in the horizontal, and leapfrog in time
with time filtering to avoid separation of solutions."

e. A "smoother-desmoother" smooths spatially to eliminate horizontal
variations of u, v, Ov, and itop for wavelengths on the order of 2AX. Time
averaging of the horizontal gradient of w allows for a longer time-step; for
AX = 40 km, the time-step is about 100 seconds.

6

f. A porous sponge boundary condition is used for the lateral boundaries
in this version of the 2DMM, although other versions permit the additional
choice of a symmetric or a periodic boundary condition. At the top of the
model a7/at is specified according to an algorithm designed to prevent spuri-
ous gravity waves, and at the surface the vertical motion (h in az coordi-
nates) is set at 0.

This version of the 2DMM includes parameterizations of precipitation and cloud
physics, and deep cumulus (Cu) convection. The precipitation and microphysics
parameterization is based on Kessler,8 except that cloud water condensation
and evaporation take place "via mutual isobaric adjustment to T, q, and c." Cu
parameterization is called about every tenth time-step, and i essentially a
one-dimensional, Lagrangian, sequential plume model which releases potential
instability.5  Such instability occurs whenever a/az < 0 where o = static
energy, and a = nOv + Lq + gz where L = latent heat of condensation (or sub-
limation) and g = gravity. Other versions of the model contain a radiation
parameterization, and in the future should include a parameterization of the
turbulent boundary layer (more details are found in Loveland*).

6C. W. Kreitzberg and D. J. Perkey, 1977, "Release of Potential Instability:
Part II. The mechanism of convective/mesocale interaction," J Atmospheric
Sci, 34:1571-1595

8E. Kessler, 1969, On the Distriiution and Continuity of Water Substance in
Atmospheric Circulation, Meteorol Monograph No. 32, American Meteorological
Society

5C. W. Kreitzberg and D. J. Perkey, 1976, "Release of Potential Instability:
Part I. A sequential plume model within a hydrostatic primitive equation
model," J Atmospheric Sci, 33:456-475

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,

hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA, 238 pp
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3. MODEL MODIFICATIONS

Two changes in the program were suggested by Loveland* to make the model more
"realistic." One change involved the insertion of certain changes in atmo-
spheric variables caused by Cu convection; the other change involved a better
way of computing vertical velocities below, near, and above H (the level at
which 0 z heights convert to z). The Cu changes were supplied by Loveland,
but the modification of vertical velocity computations required considerable
work on our part. The correction of an incorrect sign in the documented
equations solved a troublesome computational difficulty and showed that an
apparently insignificant mistake in documenting a program can lead to signifi-
cant errors. A further modification to the pro gram restricted the output to
initial values and values between specified times .

Several other relatively minor modifications were made in the program to
permit the input of terrain heights on a arid point by arid point basis. In
this manner a wedge shaped terrain was inserted such that the terrain rises
from one side to the other at a constant slope.

4. RESULTS AND SAMPLE OUTPUT

The output from a series of 20 computer runs is presented in table I for a
variety of meteorological and geographical conditions. Input parameters were
varied, and the results of the computations were compared for seven variables
in the vertical column above grid point 11 after 700 minutes of model time
unless otherwise noted. The modifications in temperature, relative humidity,
and wind apply to the sounding presented in figure 1. The two types of atmo-
spheres (that is, "moist" and "dry") and the flat and mountain terrain types
were described in Cogan. 9 In the "dry" atmosphere the initial specific humid-
ity (q) at all levels is arbitrarily set to 70 percent of the initial specific
humidities computed from the input sounding, and no precipitation is allowed
to form. The mountain is sinusoidal, with a maximum height of about 1 km at
grid point 12, and extends from grid point 6 to 18. The "wedge" terrain is
simply an inclined plane slopping upward from west to east (left to riqht in
the relevant figures) and east to west when "reversed." Generally the results
follow expected meteorological outcomes, such as greater precipitation and
cloud development when the atmosphere is made less stable through the inser-
tion of a sinusoidal mountain or via an increase in temperature at all or at
the lowest levels. The most precipitation of all 20 cases occurred when both
a sinusoidal mountain was inserted and the temperature of the lowest layers
was increased (see case 11 of table 1.) This case had the greatest vertical
velocities and least total static energy. An attempt was made to compute a
similar example, the same as case 11 except with a dry atmosphere, but the

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,
hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA, 238 pp

9J. L. Cogan, 1980, Implementation and Analysis of a Mesoscale Moisture Model,
Internal Report, US Army Atmospheric Sciences Laboratory, White Sands Missile
Range, NM
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program would not run more than about 320 minutes of model time using a one-
fourth time-step (about 20 seconds) as a consequence of computational insta-
bilities. The program "crashed" even earlier when half and full time-steps
were used. Similar computational instabilities arose when the horizontal
windspeed (U) was doubled at all levels for the case of the mountain terrain.

In the so-called dry atmosphere, q can change only as a result of temperature
changes. Nevertheless, relative humidities of> 100 percent are reached since
Cu develop although no precipitation is allowed to form. In the case of a dry
atmosphere with the sinusoidal mountain, Cu develop in the 20-minute periods
before 680 and 700 minutes, while no clouds occur with the dry flat case. The
probable cause of these convective clouds is the enhanced vertical velocity
(w) caused by the presence of the mountain which results in greater cooling of
the lifted air. Table 1 lists vertical velocities at approximately 1, 4, 7,
and 10 km. Nearly all the magnitudes of w (1w1) are larger when the mountain
is present (for example, compare cases 2 and 4).

The sample runs with the sinusoidal mountain have less precipitable water (PW)
and less static energy, except for case 14 which has a "desert" type atmo-
sphere. As one would expect, greater condensation of water vapor to form
cloud droplets or precipitation (moist cases only) would tend to decrease the
amount of water substance held in the form of vapor. Generally, more clouds
formed in the mountain cases for the periods endinq at 680 and 700 minutes.
Among the first four runs (input values of horizontal wind, temperature, or
relative humidity not changed) the moist atmosphere, mountain terrain case
with significant precipitation had a lower value of PW at 700 minutes than the
dry atmosphere, mountain terrain example. Throughout, the trade-off between
static energy and vertical velocity appears to be fairly consistent, high
(low) values of static energy go along with low (high) values of w. Since
static energy partly consists of potential energy, such a trade-off is not
unreasonable (a = ROv + Lq + gz, where gz = potential energy and the other
symbols are as defined in section 2). Total releasable instability (TRI) in a
column is larger by at least two orders of magnitude for the flat terrain runs
at 700 minutes, a result that is not surprising since TRI is released during
convection and no Cu develop during the 20-minute period ending at 700 minutes
for the flat terrain runs (none in 7 of 10 cases at 680 minutes). Tempera-
tures seem fairly independent of variations in model input parameter at all
levels except, of course, when the changed input was T.

The insertion of a wedge terrain generally produced amounts of total PW and
precipitation that were between the amounts calculated for the flat and for
the mountain cases (compare the relevant cases in table 1). The two excep-
tions were case 14 where the humidity was arbitrarily decreased in the lower
half of the atmosphere and case 17 where the wedge was "reversed." When the
initial sounding was "dried out" (relative humidities of 20 percent in the
lowest 3 km and 50 percent for the 4 to 8 km layer), the total PW was the
lowest for all cases (6.81 cm). This sounding may be considered to crudely
represent a cool desert atmosphere such as may be found at White Sands on a
cool, dry autumn day. A "reverse" wedge results in a downslope flow at all
grid points which would tend to suppress convection and, therefore, precipita-
tion.

12



In a further comparison usinq the wedge terrain, the results of running the
program with the initial horizontal velocities reversed, that is, u = -u at
all levels (case 18), did not coincide with the results where the slope of the
wedge was reversed, that is, slope downward to the east (case 17). This
outcome could be expected since the model sets up a constant normal velocity
(v component) which interacts differently with an east to west wind (-u) than
with a west to east wind (u). Nevertheless the computed values were similar
at 700 minutes except for total precipitation and vertical velocities at
levels < 7 km. In addition, the difference in total precipitation diminished
considerably at 720 minutes (from 440 to 123 mm). With the flat terrain,
increasing the horizontal windspeed throughout the sounding by 2 ms-1 or at
the 10 and 11 km levels by 5 ms- 1, or doubling it at all levels appeared to

have little effect on the output relative to that using the "standard" initial
atmosphere described in figure 1. The relevant values are given in cases 2,
7, 15, and 16 of table 1. Reducing the horizontal wind to 0.1 ms -I at all
levels when using the mountain terrain caused weaker values of w, precipita-
tion, and apparently convection (compare cases 2 and 6).

A final comparison was made between the "original" version of the 2DMM as it
arrived at ASL and the revised version currently in use (cases 20 and 4 of
table 1). Some of the results indicate more and/or stronger convection for
the original version (that is, higher values of precipitation and more clouds
built), while others seem to suggest less and/or weaker convection (that is,
higher total static energy and more PW*). The apparent paradox of this com-
parison possibly could be resolved if most of the precipitation fell during
the first, say, 6 hours, as suggested by results presented in section 5.2 of
this report and if the atmosphere tended to become more stable afterwards. If
the precipitation occurred earlier in the "unmodified" program, or the atmo-
sphere stabilized more rapidly after 6 hours, then a higher value of total
precipitation could be computed at 700 minutes along with a higher value of,
say, total static energy.

5. CROSS-SECTIONAL ANALYSES

To obtain a better idea of the effect of varying the input parameters, and to
obtain a two-dimensional view, we constructed cross sections of vertical
velocity,** graphs of accumulated precipitation (AP), and graphs of rain rate

*In the context of this report and the 2DMM, convection may be enhanced

indirectly as a result of orographic effects via the mescale destabilization
of the atmosphere. The relationships of the computed variables to apparent
strength and/or amount of convection were suggested by the other comparisons
made for this report.

**These are mesoscale values, not the values inside the convective plumes.
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(this latter quantity for time variation of results only). All of the cross
sections and graphs were derived from computer runs using a moist atmosphere
(that is, precipitation allowed to form and initial values of relative humid-
ity not altered). A series of cross sections of vertical velocity*** (w) and
graphs of total AP were prepared for runs with different input parameters at
the model time of 720 minutes (figures 2 through 7). Another set of cross
sections and graphs (figures 8 through 13) include w in cm s-1, AP ;n milli-
meters, and precipitation rate (PR) in millimeters per 104 seconds for every 2
hours of model time from 120 to 720 minutes for the case of a sinusoidal
mountain.

5.1. Variation of Input Parameters at Constant Model Time.

Figure 2a shows the cross section of w, and figure 2b presents the graph of AP
for the case with flat terrain. AP does not vary, except near the lateral
boundaries (grid points 1, 2, 24, 25); the enhancement at the boundary grid
points is probably an artifact of the boundary conditions. A similar enhance-
ment apparently occurs in most of the other cases as well. Figure 2a illus-
trates the relative lack of activity in the flat terrain case where the
magnitude of w is less than 0.1 cm s-1 everywhere. A lack of significant con-
vection also is indicated in figure 2b where AP is only about 0.6 mm except
near the lateral boundaries.

Values of w and AP showed significant increases when the input parameters were
changed for either terrain or temperature. Figures 3a and b show values of
the above variables when the lower layers of the atmosphere are heated arhi-
trarily by 50C at the surface through 1.0 km, 3C at 2.0 km, and 1.5°C at 3.0
km. Vertical velocity below 10 km is nearly everywhere negative (downward
motion) with values of the largest magnitude to the right of the figure where
some exceed -1.5 cm s-1.  A band of weak positive w overlies the stronqer
negative zone from grid point 1 to 23. The orientation of higher values to
the right (east) possibly arises from the rightward (eastward) propagation of
convection by the mean horizontal flow (u). Part of this larger magnitude may
be a result of boundary effects as suggested by figure 3b, where the "true"
precipitation amounts are probably represented by those for columns 7 through
20. Values of AP for columns 1 throuqh 6 and 21 through 25 are probably
contaminated by boundary effects that have propagated towards the center.

The enhancement by boundary effects also is apparent in figures 4a and b where
lower level heating is combined with the inclusion of the sinusoidal moun-
tain. Aside from the boundary enhancement, AP is everywhere qreater than for

***Vertical velocity below H, the level (here 3.5 km) which separates terrain

following coordinates from ordinary coordinates above, should be strictly
denoted as 6 where h is height. However, to avoid more complicated cross
sections, we follow the convention of the computer output and call all
vertical velocities w. For more information on w and 6, see J. L. Cogan,
1980, Implementation and Analysis of a Mesoscale Moisture Model, Internal
Report, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM
(reference 9), and K. T. Loveland 1980, Unpublished manuscripts on the two-
dimensional, hydrostatic, primitive equation model, Department of Physics and
Atmospheric Sciences, Drexel University, Philadelphia, PA, 238 pp
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the mountain case without the heating (see figure 13b), and the magnitudes of
w generally are larger by a factor of two or more (compare figure 4a with
figure 13a). The mean value of AP and most individual values of magnitude of
w (Iwi) are larger than the respective values computed for the case of flat
terrain with lower level heating (figures 3a and b). Furthermore, fiqures 4a
and b suggest a more organized convection, especially on the windward (west)
side of the mountain where there is a zone of high AP centered on grid point
8. The case presented in figures 4a and b produces the most convection and
seems to be the least stable of the successful computer runs to date. When
surface heating and the sinusoidal mountain were added to a "dry" atmosphere,
the program aborted after about 320 minutes of model time even with a reduced
time-step. Perhaps boundary instabilities propagated to the center and
beyond, reinforced one another, and overwhelmed the smoothing routines. In
the moist case, some energy was diverted to precipitation, but not in the
"dry" case. This diversion may have reduced other variables such as w suffi-
ciently so that extreme values were avoided.

Figures 5a and b show the output where the terrain is in the form of a wedge
as an inclined plane sloping from left to right (west to east). Here values
of w are greater than those for the flat terrain, but significantly less than
in most other cases (compare figures 2a, 3a, 4a, 5a, and 13a). The positive
and negative regions of w are organized primarily in the horizontal with a
ribbon of positive w overlying a band of negative w. Figure 5b shows that
overall precipitation was nearly as great as with the sinusoidal mountain
(about 59.5 versus 62 mm), but that no obvious boundary enhancement and no
peak zone occurred (compare with figure 13b). The precipitation in the wedge
terrain case is more uniformly distributed even though more precipitation
falls on the windward (left) part of the wedge. This decrease in AP from west
to east suggests that the atmosphere is progressively "dried out" in the
downwind direction.

A comparison also was made between the results of the unmodified "original"
version of the 2DMM (figures 6a and b) and the version modified by the author
(figures 13a and b). The sinusoidal mountain terrain was used with the "stan-
dard" atmosphere of figure 1 because it was expected that this case would show
any significant differences without causing numerical instabilities and a
program abort. In figure 6a the zones of w are more horizontal than in figure
13a, with an area of negative w over the mountain surmounted by alternating
layers of positive and negative values. The locus of maximum values of w
roughly runs from about 1 km over the top of the mountain at qrid point 13 to
about 8 km near grid point 17 and appears to extend up through a relatively
weak zone of positive w to around grid point 18 or 19 near the "top" of the
atmosphere at 14 km. The cross section of w from the modified 2DMM (figure
13a) shows more organization with alternating plumes of positive and negative
w. As in figure 6a, an area of negative w lies over the mountain at grid
point 13, but the remainder of the pattern is quite different. Maximum values
of 1w1 are similar, but the locus of the maxima is nearly horizontal. The
graph of AP for the unmodified program (figure 6b) is sharply peaked about
grid point 9, with a maximum value more than twice the maximum for the modi-
fied program (figure 13b). However, outside the zone of heavy precipitation
amounts between grid points 6 and 12 (the entire windward side of the moun-
tain), the modified program generally produces higher values. If the peak
centered on grid point 9 were removed, figure 6b would closely resemble figure
2b for flat terrain. The modifications to the 2DMM apparently caused less
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instability and convection in the peak zone but more over the other grid
points. The changes also seem to affect the distribution of w more than its
magnitude.

Several other graphs of AP were prepared for three computer runs using the
wedge terrain. Figure 7a shows the result on AP of a wedge of half the slope
as that for figure 5b. The total amount of precipitation is reduced by about
one-third, and AP only slightly decreases downwind to the right (east). The
grid point to grid point variation in AP increased somewhat, and once again
boundary effects are not obvious. Nevertheless, the reduced wedge still
produces more than twice the total AP of the flat terrain case. Two further
computer runs (figures 7b and c) indicate that little difference in AP arises
when u is reversed (that is, u = -u) as compared with reversing the wedge
(that is, upward sloping to the left [west]). The total amounts of AP are
nearly the same (20.286 and 19.689 mm, respectively), and both cases produce
only slightly more precipitation than the flat terrain case (17.430 mm). In
figure 7b the boundary appears to affect the rightmost grid points and in
figure 7c the leftmost grid points. For these latter runs the half-magnitude
wedge was used; a larger wedge may have resulted in relatively more signifi-
cant differences in AP.

5.2. Time Variation of Results

A series of computer runs was performed to obtain a set of cross sections and
graphs every 2 hours of model time for w, AP, and PR. Precipitation mostly
arises from convective processes, but occasionally there is a contribution
from so-called "stable" processes. In the context of the 2DMM, "stable"
precipitation arises from mesoscale uplift (the values of w shown in the cross
sections of this paper). PR arising from "stable" precipitation is labelled
whenever it occurs. Otherwise precipitation is assumed to be of the convec-
tive type. Note that AP may consist partly of stable precipitation, but it
was not separated out in the respective graphs because of the extremely small
amounts involved. For example, the greatest absolute and proportional amount
of stable AP was computed for the sinusoidal mountain case where 0.193 mm
occurred out of a total AP of 62.064 mm or 0.31 percent. Figures 8 through 13
show the changes that took place in the field of w and in AP and PR amounts as
a function of time. PR is the rate at the indicated time; other values may
occur at other times.

The cross sections of w show that its magnitude did not change significantly
until sometime between 480 and 600 minutes (compare figures Ila and 12a), but
that the sign and organization of w showed some important changes beginning
after the initial output at 120 minutes. Over the center of the mountain near
grid point 13 at heights around 3 to 5 km, a region of relatively strong
negative w at 120 minutes weakened and became a region of positive w of about
the same magnitude at 360 minutes. At 480 minutes that same reqion contained
somewhat weaker negative values; at 720 minutes these negative values had
strengthened considerably. During the 12 hours of model time, the orientation
or slope of the major regions of positive and negative w reversed direction.
Regions of w generally sloped upward from right to left (east to west) at 120
minutes, becoming nearly horizontal at 360 minutes. The horizontal stratifi-
cation began to break down by 480 minutes and was replaced by a generally
vertical orientation at 600 minutes. By 720 minutes, the pattern of w sloped
upward from left to right (west to east).
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The graphs of AP indicate that most of the precipitation in the peak region
(that is, grid points 6 through 12) occurred during the first 240 minutes.
Important amounts of precipitation did not develop outside the peak region
until around 480 minutes. These observations are supported by the figures of
PR plotted against distance in kilometers or grid point. Virtually no precip-
itation took place at 360 minutes when the zones of w were nearly horizon-
tal. Stable precipitation first appeared on the graphs of PR at 480 minutes
(figure llc) although the computer output indicated that some stable precipi-
tation occurred between 240 and 360 minutes. All of the stable precipitation
occurred over grid point 12 throughout the entire 12-hour model period.

Apparently the upslope flow over the mountain stimulates the development of
convection and the generation of stable precipitation. The b and c parts of
figures 8 through 13 relate AP and stable PR to the location of the mountain
as indicated by the double-headed arrow on each graph. The size and shape of
the mountain are indicated on each of the cross sections. After the atmo-
sphere "drys out" in the peak zone, convection forms downstream, increasing AP
at most grid points > 12.

6. SUGGESTIONS AND CONCLUSION

The results of computations using the 2DMM have a positive potential to
provide some useful input for some EO algorithms. As an example of a possible
use of output from the 2DMM. we refer to section 2.2 on "Natural Aerosols" of
Duncan et al. 7  The algorithm used in this section has the form of y = cxb,
where c = 10a, y is the extinction coefficient in the desired spectral band, x
is the coefficient for visible radiation, and a and b are constants extracted
from empirical data for various atmospheric situations. Here x is derived
from Koshmeider's relation, x = 3.912/V where V is visibility. The constants
a and b are assumed to be valid for all types and intensities of rain.
However, this assumption may be an oversimplification even though visibility
is crudely related to quantities such as PR. Perhaps a better algorithm would
be one that uses PR directly as input.* Computed results froi, the 20MM could
provide the input for a relationship between PR and attenuation such as those
presented by Chen in his figures 3 and 4 and his table 1.

Suppose that we have two rainfall situations that produce similar visibilities
but different PR. A light rain with many small drops may result in the same

7L. 0. Duncan et al, 1979, The Electro-Optical System Atmospheric Effects
Library, Volume I, Technical Documentation. ASL-TR-UU47, US Army Atmospheric
Sciences Laboratory, White Sands Missile Range, WM

*The latest version of EOSAEL to be called EOSAEL 80 will use an algorithm
that computes the extinction coefficient for rain as a simple function of rain
rate. This change is a step towards a more realistic representation of
extinction by "natural aerosols."

1°C. C. Chen, 1975, Attenuation of Electromagnetic Radiation by Haze, Fog,
Clouds, and Rain, Report No. R-1694-PR, Rand Corporation, prepared for the US
Air Force under contract F44620-73-C-0011, Santa Monica, CA
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visibility as a heavier rain with fewer but much larger drops. The algorithm
presented by Duncan et al would compute one value of the extinction coeffi-
cient for the, say, 3um to 5um infrared. However, using PR and figure 3 of
Chen we would obtain two values. For example, doubling the PR from 4 to 8 nu
per hour would increase the extinction coefficient from about 2.5 to about 4.2
dB km-1. Such values of PR are not unreasonable. The significance of better
estimates of the extinction coefficient depends on the characteristics of the
particular sensors.

Duncan et a17 as well as the author of this report recognize that the present
empirical extinction models are far from the best possible algorithms for the
estimation of attenuation by so-called natural aerosols. Duncan et al note
"Until techniques are developed to predict composition and size distribution
from meteorological measurements, a model which does not depend on aerosol
microphysical data must be adopted."7  However, a more realistic 30MM of the
type described by Cionco2 and Kreitzberg et al1 could provide useful input,
for example, in the form of drop-size distributions within specified fogs or
rain types. The need for field experiments would be reduced to the few needed
for "calibration" and verification of a 3DMM. A 3DMM then could provide data
for EO algorithms for a large variety of atmospheric conditions and terrain
types.

The sensitivity analysis performed for this report indicated the large amount
of information on mesoscale moisture processes available from the relatively
uncomplicated 2DMM. A limitation of the model was the inability to avoid
computational instabilities for the combination of an unstable sounding and
sizable variations in terrain. The insertion of relatively small terrain
features stimulated large changes in precipitation amount and vertical veloc-
ity. The large differences in precipitation amount are supported at least
qualitatively by common observations, for example, more rain in mountainous
areas and where there is upslope flow. Work with the 2DMM suggested that
placement of a field experiment in an unrepresentative location could result
in misleading data. Also data taken in a so-called representative location
under "typical" meteorological conditions may lead to unreliable results if
there are significant variations in terrain and/or atmospheric conditions
within the area of concern. For example, a significant deviation from "typi-
cal" values of temperature of the lower atmosphere leading to a large change
in convection and a consequent increase in precipitation rate, is likely to
cause serious problems for the application of EO algorithms if such variations

7L. 0. Duncan, 1979, The Electro-Optical System Atmospheric Effects Library,
Volume I, Technical Documentation. ASL-TR-0047, US Army Atmospheric Sciences
Laboratory, White Sands Missile Range, WM

2R. M. Cionco, 1980, Moisture Analysis, Depiction and Prediction System of
Models: Description of the ASL Program, Internal Report, US Army Atmospheric
Sciences Laboratory, White Sands Missile Range, NM

1C. W. Kreitzberg, W. D. Mount, and B. R. Fow, 1979, Preliminary Evaluation of
Meteorological Models for Moisture Depiction and Prediction for Electro-
Optical Applications, Contract DAAGZ9-76-D-0100, US Army Research OffTce, PD
Box I22T17 Research Triangle Park, NC
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were not considered during planning of the experiment. Additionally, climato-
logical values of meteorological variables may be misleading if applied to a
location where meteorological conditions fluctuate widely or the terrain
varies greatly. Consequently, the results of computations using the 20MM
should provide useful information for those developing and applying EO algo-
rithms. A more complex 3DMM can produce input for improved EO algorithms in
the form of composition and size distribution of microphysical parameters.
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FLAT TERRAIN T.T S*C AT 41.O.

MOIST ATM T- T+C AT 2.fts
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X

Figure 3a. Cross section of vertical velocity (w) with coordinates of height
and horizontal distance (x). The same as 2a except that the
temperature (T) sounding was modified so that T = T + 50C at 0-1
km, T = T + 3°C at 2 km, and T = T + 1.50C at 3 km.

30 - FLAT TERRAIN

MOIST ATM
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Figure 3b. Same as figure 2b but with the initial vertical profile of
temperature (T) modified so that T =T + 5C at 0-1 km, T =T +
3°C at 2 kin, and T =T + 1.5°C at 3 kin.
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Figure 4a. Cross section of vertical velocity (W with coordinates of height
and distance (x). The same as 2a except that sinusoidal mountain
terrain was used (indicated on the cross section) and the initial
temperature sounding was modified as for 2b (and indicated on the
cross section).

SINUSOI]DAL MTN
MOIST ATM

30
T =T + 5C AT 0.0-1.0km
T = T +31C AT 2.0k-
T =T +1.51C AT 3.0km

25

0I.. 1.1-MOUNTAIN-m

1- 20 TOTAL AP= 340.005mm

133

9

0

1 40 120 200 600 00 960 (kWn
2 4 6 0 10 12 14 16 10 20 22 24

x (GRID POINT)

Figure 4b. Same as figure 2b but with the sinusoidal mountai-n and the initial
vertical profile of temperature (T) modified as in 3b. The
location of the sinusoidal mountain is indicated by the double
ended arrow.
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Z MOIST ATM

(0.0 TO 0.48km)

TOTAL AP =37.842mm
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Figure 7. Graphs of accumulated precipitation (AP) plotted against horizontal
distance (x). Model input parameters are listed on the separate
graphs. Total AP Is the sum of all grid point values.
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APPENDIX

PROGNOSTIC EQUATIONS

East wind velocity, u

au * au aw - E + au)

-u- - + fv~e B~+-
at ax aNv- x 91a -L u

North wind velocity, v

av Uav *av fue ,- go 2E+
af ax 75 fa viy y 3Y 3 tcum

Virtual potential temperature, Ov

ae v aev * a de C Ia\

at~ axatv

Specific humidity, q

aq - q aq + (dq) +(~aT uax ah r\d t cum

Cloud water concentration, c

a.ac u cL'c ac 
P u--hax)cum

Rain water concentration, r

-r ar + dr) 1 a(PrV t
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Exner function (pressure) at the top, wtop

aitop "top + + t o p
a a u ---- vcum

Prognostic equations for the primitive equation model are summarized from
Loveland.* The subscripts u, and cum refer to the microphysical and cumulus
parameterizations, respectively. In these equations, s is the "coordinate

slope factor:" for heights h < H, 0(h) = 1 -n; and for h > H, 0 = . E =

terrain elevation above sea level (the height of level 1). h = vertical

velocity where h < H. Note that for h < H, h = z EH ; and for h > H, h =

z. See Loveland for more complete definitions.

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,
hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA
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DIAGNOSTIC EQUATIONS

Hydrostatic (pressure)

C /R
B '=9 (1 + c + r); p =

Vertical velocity (continuity)

a(Ph) _ 3(Pu) p d + a

where P = and 6 =
10 h > H

Temperature

T R v
T=€- d 1= 0.61
C p(1 + C q) 

= 1 1

Equation of state (density)

Cp p p

V TRv
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Diagnostic equations for the primitive equation model are summarized from
Loveland.* In these equations a is the "coordinate compression factor": 0(x)

-H E for h < H where E = terrain elevation above sea level, and a(x) = 1

for h > H. E . See Loveland for more complete definitions.

*K. T. Loveland, 1980, Unpublished manuscripts on the two-dimensional,

hydrostatic, primitive equation model, Department of Physics and Atmospheric
Sciences, Drexel University, Philadelphia, PA
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